

DELIVERABLE

Project Acronym: EPIC

Grant Agreement number: 270895

Project Title: European Platform for Intelligent Cities

[Deliverable 4.1B: Platform delivery with testing Report &
Service Catalogue]

Version: 2.0

Authors:

Margarete Donovang-Kuhlisch (IBM) Philippe Perennez (NAV)

Wilhelm Stoll (IBM) Joshua Cooper (HIL)

Bill Hymas (IBM) Ravi Coote (FKIE)

Jaikishan Lakhan (IBM) Pavlos Kranas (NTUA)

 Jonas Freiknecht (IBM) Wouter Van den Bousch (IBBT)

Reviewers:

Keith Osman (BCU) Andreas Menychtas (NTUA)

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

P Public P

C Confidential, only for members of the consortium and the Commission Services

 EPIC ï Deliverable D4.1

© EPIC Consortium 2 Version 2.0 - 23/06/2012

Revision History

Version Date Author Organisation Description

0.1 01/02/12 Wilhelm Stoll IBM ITOC

0.2 29/02/12 Wilhelm Stoll IBM Version for Review

0.3 23/04712 Wilhelm Stoll IBM Adapted version following reviewer`s

comments

0.4 14/05/12 Wilhelm Stoll IBM Contributions of project partners

(NTUA, ATC, IBBT) added

0.5 17/05/12 Andreas

Menychtas ï

Keith Osman

NTUA

BCU

Internal Review remarks

1.0 17/05/12 Wilhelm Stoll IBM Processing reviewerôs remarks and

editing final version

2.0 20/06/12 Wilhelm Stoll IBM Test cases for the urban planning

application service have been added in

chapter 4.3.2.2

Test results from integration testing

have been added in chapter 4.4.2

Feedback loop to WP3 isoutlined in

chapter 4.4.3

Chapter 3.6 on Service Catalogue

revised

 Statement of originality:

This deliverable contains original unpublished work except where clearly

indicated otherwise. Acknowledgement of previously published material

and of the work of others has been made through appropriate citation,

quotation or both.

 EPIC ï Deliverable D4.1

© EPIC Consortium 3 Version 2.0 - 23/06/2012

Table of Contents

1 Executive Summary 7

2 Introduction 8

3 EPIC Platform Delivery 11
3.1 The EPIC Cloud Platform 12
3.2 System Topology 13
3.3 Software Products 14
3.4 Portals, Portlets and Portal Servers 14
3.5 Platform Deployment Services 15

3.5.1 Deployment of web services (.war files) in Portal 15
3.5.2 Calling a service in service catalogue from the portal 15

3.6 Smart City Services Catalogue 17
3.6.1 The Business Need for a Service Catalogue 18
3.6.2 Protocols and APIs 20
3.6.3 EPIC Service Catalogue Use Example 24

3.7 User Management Services 32

4 Testing 34
4.1 General Testing Methodology/Approach 34
4.2 EPIC Testing Approach 35

4.2.1 Properties to be tested 37
4.2.2 How will the test be executed 37
4.2.3 Test Environment 37
4.2.4 Test Coverage 37
4.2.5 Test Purposes 37

4.3 Test Cases 41
4.3.1 EPIC Platform 42
4.3.2 Pilot Application Services 45
4.3.3 User Management 54

4.4 Test Reports 65
4.4.1 Test Phase 1 65
4.4.2 Test Phase 2 - System Integration Test 68
4.4.3 Handling of issues 71

5 Conclusions 72

Annex A User Management 73
A.1 Requirements 73
A.2 Implementation Method 73
A.3 Data Structure 74
A.4 Pilot Access to User Data 75
A.5 User-Interaction Logging 75
A.6 Pilot Access to Underlying Data 76
A.7 Database 78
A.8 The basic Web Service 78
A.9 Epic Usage History 78
A.10 Pilot User Interaction Log 81
A.11 Courtesy Title 83
A.12 Languages 84

 EPIC ï Deliverable D4.1

© EPIC Consortium 4 Version 2.0 - 23/06/2012

A.13 Gender 85
A.14 Pilot Languages 86
A.15 Pilot Roles 90
A.16 Pilot Specific Data Type 91
A.17 Pilot User Age Group 94
A.18 Pilots 96
A.19 User Contact Data Private 99
A.20 User 100
A.21 User Data Pilot Specific 107
A.22 User Pilot Access 111
A.23 Conclusions 115

 EPIC ï Deliverable D4.1

© EPIC Consortium 5 Version 2.0 - 23/06/2012

List of Figures

Figure 1: Enterprise architecture relationships ... 8

Figure 2: Platform delivery methodology ... 8

Figure 3: IBM Smart Cloud - Login Screen ... 12

Figure 4: EPIC platform topology .. 13

Figure 5: Integration of web services into a portal ... 16

Figure 6: EPIC Service Catalogue - The Login Page .. 25

Figure 7: EPIC Service Catalogue - The Start Page .. 26

Figure 8: EPIC Service Catalogue ï Service Discovery Configuration 27

Figure 9: EPIC Service Catalogue - List of FKIE Services .. 28

Figure 10: EPIC Service Catalogue - FKIE Service Overview 29

Figure 11: EPIC Catalogue ï FKIE Service WSDL ... 30

Figure 12: EPIC Service Catalogue ï FKIE Service Graphical View 31

Figure 13: EPIC Service Catalogue - Eclipse with WSRR Plug-in 32

Figure 14: EPIC Testing Approach... 36

Figure 15: Test Case Example .. 41

Figure 16: Mouse navigation for the urban planning service ... 66

Figure 17: User management data structures .. 74

Figure 18: Pilot-Roles and Pilot-Specific-Data Types .. 76

Figure 19: Pilot User Groups .. 77

Figure 20: Create User Portlet .. 77

Figure 21: Group Permission Portlet .. 78

List of Tables

Table 1: Relocation Application ï Test Results ... 68

Table 2: Relocation Application ï Severity of detected erros .. 70

Table 3: Urban Planning ï Test Results ... 70

Table 4: Urban Planning Application ï Severity of detected erros 71

 EPIC ï Deliverable D4.1

© EPIC Consortium 6 Version 2.0 - 23/06/2012

List of Terms and Abbreviations

BCU Birmingham City University

DOW Document of Work

EPIC European Platform for Intelligent Cities

EU European Union

FKIE Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V.

Hil Hildebrand Technology Limited

IaaS Infrastructure as a Service

IBBT Interdisciplinary Institute For Broadband Technology

IBM IBM Deutschland GMBH

NAV Navidis

NTUA National Technical University of Athens

PaaS Platform as a Service

POI Point of Interest

RPWS Remote Portlet Web Services

SaaS Software as a Service

SME Small and Medium Enterprise

SOA Service Oriented Architecture

SUT System Under Test

UDDI Universal Description Discovery and Integration

URL Uniform Resource Locator

WPS WebSphere Portal Server

WSDL Web Service Description Language

WSRR WebSphere Service Registry and Repository

 EPIC ï Deliverable D4.1

© EPIC Consortium 7 Version 2.0 - 23/06/2012

1 Executive Summary

As Europe develops towards a politically and economically integrated body, agencies,

organisations and enterprises from various nations face the challenge of having to

collaborate and provide and share information and services to achieve common goals and

to implement the reality of the EU Single Market. Therefore, EPIC nurtures the notion of

a horizontal open-standards based SOA foundation for city service delivery to citizens,

business and other administrations alike.

In work package 2, we have identified the requirements defined by end users and service

providers that inform the platform design and the service delivery through the EPIC

portal leveraging the web service catalogue underpinning the pilots.

In work package 3, we have designed the EPIC platform as a flexible and scalable

hosting foundation for smart city services. In particular, EPIC addresses as a pilot the

requirement of cross-country collaborative relocation services for citizens moving from

one city to another across the EU Member States.

The purpose of this document is to describe the actual platform delivery, the deployment

and testing of the pilot applications as well as the population of the web service catalogue

as it presents itself before the pilots are fully deployed.

The structure of this document is as follows: in the introduction of chapter 2, we briefly

describe the underpinning methodology for platform delivery and service deployment.

Chapter 3 gives an overview of the platform (topology, SW products included, etc.) and

documents platform delivery and platform service deployment. Additionally descriptions

of the user management and the service catalogue are given. Chapter 4 handles the EPIC

testing approach (methodology, test cases etc. In chapter 5, we conclude with a brief

summary. Details on the user management are included in the annex of the deliverable.

Due to some delay in pilot application development and deployment on the platform not

all information needed for this document has been available when this version of the

deliverable has been written (where the service deployment was shortly before

completion). Thus information on test cases used for testing after deployment, the

resulting test reports are still missing. Furthermore the service catalogue must be

populated according to the deployment experience. All this information will be added as

soon as available in the annex of this document resulting in deliverable 4.1b.

According to the comments given by the reviewers in the second project review the

following changes have been made to the document:

¶ Test cases for the urban planning application service have been added in chapter

4.3.2.2

¶ Test results from integration testing have been added in chapter 4.4.2

¶ Feedback loop to WP3 is outlined in chapter 4.4.3

¶ Chapter 3.6 on Service Catalogue revised

 EPIC ï Deliverable D4.1

© EPIC Consortium 8 Version 2.0 - 23/06/2012

2 Introduction

Architecting complex systems and operational enterprises demands an extraordinary

capacity to understand and manage complex relationships. A thorough understanding of

the enterpriseôs architecture is crucial to effective design, implementation, deployment,

and maintenance of evolving systems.

Figure 1: Enterprise architecture relationships

Therefore, the EPIC platform delivery and establishment of the EPIC service catalogue

follows a proven methodology:

Figure 2: Platform delivery methodology

Determine the

intended use of

the architecture

Build the

application

services

Determine

services to be

built

Determine

characteristics to

be captured

Determine scope

of architecture

1

5432

 EPIC ï Deliverable D4.1

© EPIC Consortium 9 Version 2.0 - 23/06/2012

Step 1: Determine the intended use of the architecture.

In most cases, the luxury of be enough time, money, or resources to build top-down, all-

inclusive architectures does not exist. Architectures, therefore, should be built with a

specific purpose in mind, whether the intent is business process reengineering, system

acquisition, system-of-systems migration or integration, user training, interoperability

evaluation, or agile new service development. Before beginning to describe an

architecture, an organization must determine as specifically as possible the issue(s) the

architecture and the platform are intended to explore, the questions the architecture is

expected to help answer, and the interests and perspectives of the audience and users.

Step 2: Determine the architectureôs scope, context, environment, and any other assumptions to be

considered.

Once the first step has been completed, the prospective content of the architecture can be

determined. Items to be considered include, but are not limited to, the scope of the

architecture (activities, functions, organizations, timeframes, etc.), the appropriate level

of detail to be captured, the architecture effortôs context within the ñbigger pictureò,

operational scenarios, situations and geographical areas to be considered, the projected

cost, and the projected availability and capabilities of specific technologies during the

timeframe to be depicted. Project-management factors that contribute to the

determinations include the resources available for building the architecture as well as the

resources and level of expertise available for analysing the architecture.

Step 3: Determine which requirements the architecture needs to address.

Care should be taken to determine which requirements need to be described in order to

satisfy the purpose of the architecture.

Care should also be taken to predict the future use of the architecture so that, within

resource limitations, the architecture can be structured to accommodate future tailoring,

extension, or reuse

Step 4: Determine which views should be built.

Depending on steps one through three, determine which products and services to build

and what information must be gathered to build the templates for them.

Step 5: Build the requisite products.

Build the required set of architecture products and populate the service catalogue. To

facilitate integration with other architectures, it is critical to include all depictions of

relationships with these.

Care should be taken to ensure that the service templates built are consistent and properly

interrelated.

This deliverable describes different aspects of the EPIC project:

¶ EPIC platform deployment

¶ Service Catalogue

¶ User Management

¶ Testing approach with testing reports

 EPIC ï Deliverable D4.1

© EPIC Consortium 10 Version 2.0 - 23/06/2012

At the time the deliverable has been written, testing of EPIC is ongoing as Pilots enter an

extended sequence of testing cycles with closed-group and open-groups of end-users.

This document focuses on the testing approach that will be adopted down-stream during

iterative user-in-the-loop testing. A summary of resulting test reports will be added as an

addendum to this document as they become available following each cycle of user and

technical testing.

 EPIC ï Deliverable D4.1

© EPIC Consortium 11 Version 2.0 - 23/06/2012

3 EPIC Platform Delivery

The EPIC Platform has in this instance been implemented using the IBM SmartCloud

Enterprise Solution, as this is a proven industrial strength platform providing high-

performance and high scalability. However, the open-standards approach utilised in the

EPIC project ensures that the EPIC platform model developed within this project could

be readily deployed onto other commercial cloud platforms with no vendor lock-in.

The IBM cloud computing ecosystem includes Infrastructure as a Service (IaaS),

Software as a Service (SaaS) and Platform as a Service (PaaS) offered through public,

private and hybrid cloud delivery models, in addition to the underpinning components

necessary to build such clouds. The tools used provide an agile cloud computing

infrastructure as a service (IaaS) designed to provide rapid access to security-rich,

enterprise-class virtual server environments, well suited for development and test

activities and other dynamic workloads to meet the needs of business and public bodies.

The EPIC cloud-based service delivery platform starts with the physical hardware of the

cloud computing platform. The platform provides built-in support for virtualization based

on IBM WebSphere to support a variety of open-standards for programming and

virtualization. The Management layer provided the tools to regulate application images

with automated dynamic provisioning and de-provisioning of resources, monitor

operations and meter usage while tracking costs and allocating billing. For EPIC this is

provided by IBMôs Tivoli middleware. The final layer provides integrated workload tools

for cloud computing, primarily services or instances of code that can be executed to meet

specific business needs, including cloud based collaboration, development and test,

application development, analytics, business-to-business integration, and security.

 EPIC ï Deliverable D4.1

© EPIC Consortium 12 Version 2.0 - 23/06/2012

3.1 The EPIC Cloud Platform

The EPIC Platform is hosted on the IBM SmartCloud which provides a management

portal through which the cloud operator manages and maintains all of the cloud

operations and services delivered by the cloud. Within the EPIC project, the EPIC

platform will be managed by IBM staff, who perform the role of the City Administration

or outsourced service provider. An example of the Management Login screen is shown in

Figure 3.

Figure 3: IBM Smart Cloud - Login Screen

 EPIC ï Deliverable D4.1

© EPIC Consortium 13 Version 2.0 - 23/06/2012

3.2 System Topology

The following diagram gives an overview of the EPIC Platform topology.

Figure 4: EPIC platform topology

The diagram shows the WebSphere Process Server (WPS) instances, database server

instance and the portal server instance. The instance Process Services is the "primary"

 EPIC ï Deliverable D4.1

© EPIC Consortium 14 Version 2.0 - 23/06/2012

application server (WPS). This one has the deployment manager configured in it. This is

what is aware of and manages a cluster of application servers. The Process Server2

instance is the other member of the cluster. Each server has a node agent. The node

agents manages all the application servers under it on the particular server. There are

three application servers that are clustered together.

The clustered application servers are:

1. Wps.Messaging (made of Wps.Messaging.WpsN1Test.0 and

Wps.Messaging.WpsN2Test.0 application servers)

2. Wps.Support (made of Wps.Support.WpsN1Test.0 and

Wps.Support.WpsN2Test.0 application servers)

3. Wps.AppTarget (made of Wps.AppTarget.WpsN1Test.0 and

Wps.AppTarget.WpsN2Test.0 application servers)

Think of Wps.Messaging, Wps.Support and Wps.AppTarget as the server1 application

server. In the case of EPIC, each cluster application server has two actual application

servers instances that will have the same application deployed in both of them. The dmgr

(deployment manager) makes sure that the two nodes and the configured cluster are in

sync.

3.3 Software Products

The following list contains the installed products or related software packages with

version numbers.

¶ DB2 7.9 Enterprise Server Edition (ESE) for Linux 64 Bit

¶ WebSphere Process Server (WPS) 7.0.0.3 for Linux x86 64 Bit

¶ JRules Rule Execution Server (RES) 7.1.1.1

¶ JRules WebSphere Bundle 7.1.1.1

¶ JRules Rule Team Server (RTS) 7.1.1.1

¶ JRules Decision Validation Service (DVS) 7.1.1.1

¶ WebSphere Service Registry and Repository (WSRR) 7.0.0.3

¶ Operating system for the instances: Red Hat Enterprise Linux 5.5 x86 64 Bit

3.4 Portals, Portlets and Portal Servers

A portal allows people to interact with applications, processes, documents and other

content in a personalized and role-based fashion and allow context-relevant resources to

be delivered via standard web browsers onto a variety of fixed and mobile computing

devices including PCs, laptops, tablets and smartphones. Within EPIC, the portal server is

provided by IBM WebSphere® Portal which supports workflows, content management,

simplified usability and administration, open standards, security, and scalability. In the

 EPIC ï Deliverable D4.1

© EPIC Consortium 15 Version 2.0 - 23/06/2012

context of EPIC platform deployment, these tools would enable Cities and other bodies to

build and manage their own web portals to which a variety of organisations could provide

portlets.

A portal is created by a portal-server, which delivers portlets which are consumed by

standard web-browser technology. Portlets are pluggable user interface software

components that are managed and displayed via the portal server. Portlets produce

fragments of markup code that are aggregated to form the portal. The portal can be

considered as a series of tessellated windows each of which holds the display from an

individual portlet. In this way a portal can be created by a series of independent portlets.

The portal resembles a single web-page but is in fact a series of aggregated services from

different content providers.

The Java Portlet Specification JSR168 is an open standard that enables interoperability

for portlets between different web portals. This specification defines a set of APIs for

interaction between the portlet container and the portlet addressing the areas of

personalization, presentation and security. Use of JSR168 ensures that portlets from

different developers can be readily aggregated into a portal by a portal server.

3.5 Platform Deployment Services

3.5.1 Deployment of web services (.war files) in Portal

The deployment of web services is done in several steps which are in detail described in

the EPIC platform deployment manual which can be found on the MYBBT repository. It

is not the objective of this deliverable to describe these steps again. Therefore the

interested reader is referred to this manual. Of more interest are the experiences made by

deploying the single pilot applications o the EPIC platform. At the time this version of

the deliverable was prepared, the deployment was not completed. Therefore experience

reports of the pilots will be added to the annex of this deliverable as soon as the pilots

will make them available. This should be completed till the next project review date end

of May 2012.

3.5.2 Calling a service in service catalogue from the portal

A very important topic concerning the deployment of services is the realization of web

service calls from a portlet. Therefore, this subject will be handled in the following

shortly.

Before starting in detail how to design portlets that call web services, Figure 5 shows

how web services can be integrated into a portal.

 EPIC ï Deliverable D4.1

© EPIC Consortium 16 Version 2.0 - 23/06/2012

Figure 5: Integration of web services into a portal

Main characteristics are:

¶ Portlets can use the Websphere Web service functions

¶ RPWS (Remote Portlet Web Services) allows interactive, user-facing web

services to be easily plugged into all portals.

¶ Portal Administrators browse public or private UDDI directories for RPWS

services to plug into their portals as new portlets, without any programming.

One of the approaches that can be followed to consume a web-service in a portlet is

described in the following. The scenario used for this is to invoke an external web service

from a module on the Websphere Process Server (WPS) and reference it in Websphere

Portal through the URL.

Invoking or importing an external web service is done via WebSphere Integration

Developer.

In a typical integration scenario there may be different systems running on different

software and different languages etc. A module of the WPS may often need to connect to

these external services. In most cases web service will be the right choice for connecting

to an external system.

If a module is connecting to an external web service or it is the intention that a module

shall invoke an external web service, the external web service has to be imported into the

business process module. For importing an external web services in WebSphere

Integration Developer the following steps have to be taken.

 EPIC ï Deliverable D4.1

© EPIC Consortium 17 Version 2.0 - 23/06/2012

1. The first step in importing a web service in WebSphere Integration Developer is to

copy the WSDL files to the module.

2. Once the WSDL has been copied to the module, open the Assembly Diagram

3. Drag the WSDL to the Assembly Diagram.

4. A dialog box will be opened asking the type of component to be created.

5. Select óImport with Web Service Bindingô and click on OK.

6. From the web service port details dialog box select óUse an existing web service

portô option and click on Browse.

7. From the dialog box opened select the WSDL which has been copied as the Web

Service end point.

8. Click on OK on the next dialog box that appears.

9. You are done. The web service is imported to your Assembly Diagram. Use the

invoke component to call the web service.

3.6 Smart City Services Catalogue

According to the EPIC DOW the purpose of the Smart City Services Catalogue is to

provide a list of the service offerings within the EPIC Platform, which is extremely

important for governance and management within the solution. As new cities

introduce the EPIC Platform into their work new challenges arise. Standardised

mechanism for dealing with lifecycle management, licensing and costs for shared cloud

infrastructure are just some of these issues which must be resolved.

Therefore the Service Catalogue will contain information about applications that cities

can purchase from the EPIC platform under the Software as a Service (SaaS) model. In

addition the Service Catalogue will contain information on component services that

developers can purchase or license from the platform as components of applications that

they are developing either for the city administration or as direct market offerings.

For this two things are needed: Services descriptions and a tool for handling the services

catalogue.

The pilot services are described in D4.2 in detail. Besides this some additional

information is needed for the services catalogue, e.g. what financial (pricing etc.) and

statistical data should be provided via the service catalogue. In particular financial data

are highly dependent on the business model underlying to the single services listed in the

catalogue. Other information which from the service owner perspective seems to be

valuable for publishing via the catalogue can be stored.

 EPIC ï Deliverable D4.1

© EPIC Consortium 18 Version 2.0 - 23/06/2012

The population of the service catalogue is on-going during the activities of the living labs

according to the given project plan.

3.6.1 The Business Need for a Service Catalogue

 It seems probable that eventually most software capabilities will be delivered and

consumed as services. Of course they may be implemented as tightly coupled systems,

but the point of usage ï to the portal, to the device, to another endpoint, and so on, will

use a service-based interface. The service is the major construct for publishing and should

be used at the point of each significant interface. Service-oriented architecture (SOA)

allows us to manage the usage (delivery, acquisition, consumption, and so on) in terms

of, and in sets of, related services.

However in many respects the naming of SOA is unfortunate. Whilst SOA is of course

about architecture, it is impossible to constrain the discussion to architecture, because

matters such as business design and the delivery process are also important

considerations.

3.6.1.1 Principles and Definitions

Here are the principles and definitions that will be used in the rest of this section:

Service: A Component capable of performing a task

Service Definition: A vehicle by which a consumer's need or want is satisfied according

to a negotiated contract.

Web service: A software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in WSDL (Web Service

Definition Language)

Service-Oriented Architecture: The policies, practices, frameworks that enable

application functionality to be provided and consumed as sets of services published at a

granularity relevant to the service consumer. Services can be invoked, published and

discovered, and are abstracted away from the implementation using a single, standards

based form of interface.

3.6.1.2 The Service Architecture

 Service is the important concept. Web Services are the set of protocols by which

Services can be published, discovered and used in a technology neutral, standard form.

SOA is not just an architecture of services seen from a technology perspective, but the

policies, practices, and frameworks by which it is ensured that the right services are

provided and consumed.

 EPIC ï Deliverable D4.1

© EPIC Consortium 19 Version 2.0 - 23/06/2012

 At the core of the SOA is the need to be able to manage services as first order

deliverables. It is the service that is constantly emphasized that is the key to

communication between the provider and consumer. So a Service Architecture is needed

that ensures that services don't get reduced to the status of interfaces, rather they have an

identity of their own, and can be managed individually and in sets.

The purpose of a service catalogue is precisely to meet this need. The service catalogue is

a logical view of the available and used services for a particular business domain, such as

Relocation or Urban Planning. It helps us answer questions such as:

¶ What service do I need?

¶ What services are available to me?

¶ What services will operate together? (common semantics, business rules)

¶ What substitute services are available?

¶ What are the dependencies between services and versions of services?

Rather than leaving developers to discover individual services and put them into context,

the service cis instead their starting point that guides them to a coherent set that has been

assembled for their domain.

The purpose of the service catalogue is so that common specifications, policies, etc can

be made at the catalogue level, rather than for each individual service. For example,

services in a catalogue should all follow the same semantic standards, adhere to the same

security policy, and all point to the same global model of the domain. It also facilitates

the implementation of a number of common, lower-level business infrastructure services

that can be aggregated into other higher level business services from the same catalog.

3.6.1.3 The SOA Platform

The key to separation is to define a virtual platform that is equally relevant to a number

of real platforms. The objective of the virtual platform is to enable the separation of

services from the implementation to be as complete as possible and allow components

built on various implementation platforms to offer services which have no

implementation dependency.

The virtual SOA platform comprises a blueprint which covers the development and

implementation platforms. The blueprint provides guidance on the development and

implementation of applications to ensure that the published services conform to the same

set of structural principles that are relevant to the management and consumer view of the

services.

So what is most important for the EPIC Service Catalog, is not the actual implementation,

but the actual protocols and methods supported and used by it.

 EPIC ï Deliverable D4.1

© EPIC Consortium 20 Version 2.0 - 23/06/2012

3.6.1.4 Summary

The goal for a SOA is a world wide mesh of collaborating services, which are published

and available in the Service Catalog. Adopting SOA is essential to deliver the business

agility and IT flexibility promised by Web Services. These benefits are delivered not by

just viewing service architecture from a technology perspective and the adoption of Web

Service protocols, but require the creation of a Service Oriented Environment which

includes a Service Catalog:

¶ Service is the important concept. Web Services are the set of protocols by which

Services can be published, discovered and used in a technology neutral, standard

form.

¶ SOA is not just an architecture of services seen from a technology perspective,

but the policies, practices, and frameworks by which it is ensured the right

services are provided and consumed.

¶ Rather than leaving developers to discover individual services and put them into

context, the Service Catalogue is instead their starting point that guides them to

coherent set that has been assembled for their domain.

3.6.2 Protocols and APIs

3.6.2.1 Service Description

The Web Services Description Language is an XML -based language that is used for

describing the functionality offered by a Web service. A WSDL description of a web

service (also referred to as a WSDL file) provides a machine-readable description of how

the service can be called, what parameters it expects, and what data structures it returns.

It thus serves a roughly similar purpose as a method signature in a programming

language.

Since creating and editing WSDL XML files by hand is difficult and error prone, in most

cases the WSDL files are generated automatically by the development tool, such as

Eclipse. This means that no WSDL templates are necessary. The development tool

guarantees that the produced WSDL file is validated XML.

The WSDL describes services as collections of network endpoints, or ports. The WSDL

specification provides an XML format for documents for this purpose. The abstract

definitions of ports and messages are separated from their concrete use or instance,

allowing the reuse of these definitions. A port is defined by associating a network address

with a reusable binding, and a collection of ports defines a service. Messages are abstract

descriptions of the data being exchanged, and port types are abstract collections of

supported operations. The concrete protocol and data format specifications for a

particular port type constitutes a reusable binding, where the operations and messages are

then bound to a concrete network protocol and message format. In this way, WSDL

describes the public interface to the Web service.

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Method_signature
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/File_format

 EPIC ï Deliverable D4.1

© EPIC Consortium 21 Version 2.0 - 23/06/2012

WSDL is often used in combination with SOAP and an XML Schema to provide Web

services over the Internet. A client program connecting to a Web service can read the

WSDL file to determine what operations are available on the server. Any special

datatypes used are embedded in the WSDL file in the form of XML Schema. The client

can then use SOAP to actually call one of the operations listed in the WSDL file using

XML or HTTP.

3.6.2.2 Service Publishing

To publish a Web Services Description Language (WSDL) file you need an enterprise

application, also known as an enterprise archive (EAR) file, that contains a Web services-

enabled module and has been deployed into Web Application Server. These EAR files

are created by the development tool, such as Eclipse, used by the programmers. These

development tools allow for the creation of EAR files tailored for specific target

platforms. For instance, a WebSphere Application Server, an Apache Tomcat

Application Server, or an SAP Application Server, for example.

The purpose of publishing the WSDL file is to provide clients with a description of the

Web service, including the URL identifying the location of the service. The WSDL files

for each Web services-enabled module are published to the file system location you

specify. You can provide these WSDL files to clients that want to invoke your Web

services. They are normally made accessible via a Web Server URL on the platform.

3.6.2.3 Service Discovery

The first method developed for Service Discovery was the UDDI (Universal Description,

Discovery, and Integration) protocol. However, this is now considered a legacy protocol

by the industry because of reasons described below. A new standard, Web Services

Dynamic Discovery (WS-Discovery), will replace it. Nonetheless, support for this

legacy protocol is an important consideration for the Service Catalog.

UDDI is a platform-independent, Extensible Markup Language (XML) -based registry by

which businesses worldwide can list themselves on the Internet, and a mechanism to

register and locate web service applications. UDDI is an open industry initiative,

sponsored by the Organization for the Advancement of Structured Information Standards

(OASIS), for enabling businesses to publish service listings and discover each other, and

to define how the services or software applications interact over the Internet.

UDDI was originally proposed as a core Web service standard. It is designed to be

interrogated by SOAP messages and to provide access to Web Services Description

Language (WSDL) documents describing the protocol bindings and message formats

required to interact with the web services listed in its directory.

SOAP, originally defined as Simple Object Access Protocol, is a protocol specification

for exchanging structured information in the implementation of Web Services in

computer networks. It relies on Extensible Markup Language (XML) for its message

format, and usually relies on other Application Layer protocols, most notably Hypertext

http://en.wikipedia.org/wiki/XML_Schema_(W3C)
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datatypes
http://en.wikipedia.org/wiki/Extensible_Markup_Language
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/OASIS_(organization)
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/SOAP_(protocol)
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Protocol_(computing)
http://en.wikipedia.org/wiki/Web_Service
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Application_Layer
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

 EPIC ï Deliverable D4.1

© EPIC Consortium 22 Version 2.0 - 23/06/2012

Transfer Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP), for message

negotiation and transmission.

SOAP can form the foundation layer of a web services protocol stack, providing a basic

messaging framework upon which web services can be built. This XML based protocol

consists of three parts: an envelope, which defines what is in the message and how to

process it, a set of encoding rules for expressing instances of application-defined

datatypes, and a convention for representing procedure calls and responses. SOAP has

three major characteristics: Extensibility (security and WS-routing are among the

extensions under development), Neutrality (SOAP can be used over any transport

protocol such as HTTP, SMTP, TCP, or JMS) and Independence (SOAP allows for any

programming model).

UDDI has not been as widely adopted as its designers had hoped. IBM, Microsoft, and

SAP announced they were closing their public UDDI nodes in January 2006. The group

defining UDDI, the OASIS Universal Description, Discovery, and Integration (UDDI)

Specification Technical Committee voted to complete its work in late 2007 and has been

closed. In September 2010, Microsoft announced they were removing UDDI services

from future versions of the Windows Server operating system.

Web Services Dynamic Discovery (WS-Discovery) is a technical specification that

defines a multicast discovery protocol to locate services on a local network. As the name

suggests, the actual communication between nodes is done using web services standards,

notably SOAP-over-UDP. The protocol was originally developed by BEA Systems,

Canon, Intel, Microsoft, and WebMethods. On July 1st 2009 it was approved as a

standard by OASIS. SOAP-over-UDP is an OASIS standard covering the publication of

SOAP messages over UDP transport protocol, providing for One-Way and Request-

Response message patterns.

UDDI provides a central registry to store information about available services. It supplies

a catalogue where consumers can find services that meet their needs. This phonebook-

like directory of information allow consumers to find services by name, address, contract,

category, or by other data. UDDI can be thought of as the DNS of Web services.

On the other hand, WS-Discovery provides a protocol to discover services that are

coming and going from a network. As a service joins the network, it informs its peers of

its arrival by broadcasting a Hello message; likewise, when services drop off the network

they multicast a Bye message. WS-Discovery doesnôt rely on a single node to host

information about all available services as UDDI does. Rather, each node forwards

information about available services in an ad hoc fashion. This reduces the amount of

network infrastructure needed to discover services and facilitates bootstrapping.

UDDI provides basic publish and discovery of Web service descriptions. It does not

provide a standard repository capable of storing artifacts, nor governance capabilities for

managing the end-to-end life cycle of the various types of artifacts related to services.

UDDI has other limitations as well. For example, UDDI data model is restrictive which

puts constraints on both the information that can be managed as well as the ability to

support different usage models e.g. development, runtime, and management ï this is due

to the fact that the classification system used in UDDI is highly technical taxonomy

http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://en.wikipedia.org/wiki/Web_services_protocol_stack
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/SMTP
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/SAP_(company)
http://en.wikipedia.org/wiki/Windows_Server
http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/Web_services
http://en.wikipedia.org/wiki/SOAP-over-UDP
http://en.wikipedia.org/wiki/BEA_Systems
http://en.wikipedia.org/wiki/Canon_Inc.
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/WebMethods
http://en.wikipedia.org/wiki/Organization_for_the_Advancement_of_Structured_Information_Standards
http://en.wikipedia.org/wiki/Organization_for_the_Advancement_of_Structured_Information_Standards
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/User_Datagram_Protocol

 EPIC ï Deliverable D4.1

© EPIC Consortium 23 Version 2.0 - 23/06/2012

which fails to capture the web service semantic that is required to fully exploit the

potential of web services i.e. dynamic discovery, selection, and binding. UDDI also

requires multiple communication exchanges to perform a single operation, which may not

be suitable for all environments.

3.6.2.4 Service Catalogue Access

The main interface is a Web application deployed with the WSRR runtime. This supports

all of your user roles, offering lookup, browse, retrieve, publish, and annotate

capabilities, as well as governance activities, such as import/export and impact analysis.

The Web user interface supports customizable views of WSRR content represented to a

user. A set of user interface definition files describes the content and layout of the

various components that make up the Web user interface. The concept of user-role-

specific perspectives is supported. WebSphere Service Registry and Repository comes

with a set of predefined perspectives for the most common user roles, but you can

customize the predefined ones or introduce new, role-specific perspectives.

WebSphere Service Registry and Repository provides both Java and Web services

interface for searching, updating, creating and deleting service description and associated

metadata. For developing applications by using the API WSRR has a Java application

programming interface (API) so that you can develop Java applications that access

WSRR at runtime to find the most appropriate web service to use. WSRR integrates with

development tooling using an Eclipse plug-in to support lookup, retrieval and publishing

of service metadata.

IBM, Microsoft, HP and Intel recently published a roadmap for converging Web Services

standards for resources, events and management, which will result in new specifications

e.g. WS-ResourceTransfer and WS-EventNotification, and new versions of existing

specifications e.g. WS-MetadataExchange. The WebSphere Service Registry and

Repository will have a standards based Web Services interface.

WebSphere Service Registry and Repository is a J2EE application that installs on top of a

WebSphere Application Server. Persistence is provided by IBM metadata management

technology (Metadata Server) which interacts with a Relational Data Base configured

through the Application Server. WebSphere Service Registry and Repository provides

both Java and SOAP APIs. Basic CRUD operations as well as governance operations and

a flexible query capability based on XPath are provided through both APIs. The product

also has a web-based user interface for users representing different roles to interact with

the WSRR, supporting lookup and publish scenarios, metadata management and analysis

scenarios, and functions that support SOA governance.

During development, you can perform tasks such as creating documents in WSRR by

using the Web-based user interface (UI). If you are developing applications in an Eclipse

environment, you can also use an Eclipse plug-in UI to perform tasks such as searching

for and uploading services to WSRR.

 EPIC ï Deliverable D4.1

© EPIC Consortium 24 Version 2.0 - 23/06/2012

The WSRR API allows you to develop applications that can access WSRR at runtime to

find the most appropriate webservice to use.

There are three aspects of the Java programming model:

¶ The representation of the content of WSRR.

¶ The support for creating, retrieving, updating, and deleting content in WSRR.

¶ The support for querying WSRR.

The API is based on Service Data Objects (SDO) Version 2. All artifacts that are stored

in WSRR are represented by SDO. The WSRR types have both data value properties and

data object properties, that are referred to as relationships in WSRR. All WSRR SDO

types support open content properties, properties that are defined on an individual

instance of a type.

The WSRR API is made available through EJB, web services, and REST interfaces.

3.6.3 EPIC Service Catalogue Use Example

Here is a brief description of the EPIC Service Catalogue as it is implemented using

WebSphere Resistry and Repository (WSRR). The WSRR instance is deployed as a

WebSphere Application Server on one of the machines used for the EPIC platform. An

individual machine running WebSphere can run and manage several individual

WebSphere Servers performing completely different functionality in a total system. For

example, the WebSphere Portal Server, which is used as the host for the EPIC Portal and

the portlets, is a specially dedicated and configured WebSphere Application Server. This

can be started, stopped and managed independently from other dedicated WebSphere

Application Servers on that machine. So in our case, the WSRR is deployed on the

collection of machine that we call the EPIC Platform, but it is not logically or physically

part of the EPIC Portal itself.

Since we are still doing development work on this, although it is deployed on the

Internet, it is not available for open access to all users. The TCP/IP port is blocked by the

local firewall. Access is achieved by SSH tunneling to the physical machine where the

WSRR is located. The login access is only enabled to be done with Public/Private Keys.

Once the tunnel is open, the local browser can access the WSRR interface as if it was a

direct URL connection to the WSRR through the Internet. For later stages, this will be

opened up for all users, and they will simply access the URL Access will be controlled

using normal userids and passwords.

When the tunnel is open, and the browser opens the URL, the login screen is presented

(see Figure 6) Note that the hostname is localhost, since this is a tunnel from the local

system to the remote system. We create our tunnel sessions using the PuTTY tool:

 EPIC ï Deliverable D4.1

© EPIC Consortium 25 Version 2.0 - 23/06/2012

Figure 6: EPIC Service Catalogue - The Login Page

After a successful login, the user will have a choice of perspectives, based on the

profile(s) available to the user (see Figure 7). Note that at the moment, the interface is

very cluttered. One of our tasks is to simplify and customize this for the EPIC user roles.

That is, a developer will see a different set of choices than an administrator, or another

class of user role. This is described in Service Catalogue Access above.

 EPIC ï Deliverable D4.1

© EPIC Consortium 26 Version 2.0 - 23/06/2012

Figure 7: EPIC Service Catalogue - The Start Page

Note the two boxes on the left of the screen, Business Objects and Service Documents.

The service documents include the WSDL files for individual Web Services. Business

Objects can contain, among other things, sets of services that together form an

application.

The Service Documents can be populated in two ways. A user can manually enter a URL

of a service, which will pull the WSDL file, and any files included by the WSDL (XSD,

etc.) into the repository. The other way to populate the repository is using Service

Discovery. Here an XML configuration file is created manually, which specifies a target

system, which is then scanned for available services. Basically, this just means the IP

address and the SOAP port for the Web Service Application Server. The WS-Discovery

protocol then exchanges messages between the WSRR and the target system, passing the

Web Service WSDL and other files from the target system, to the WSRR.

Here is an example of a configuration for a discovery (see Figure 8) . The host and port

elements are used to define the target system SOAP port. Additionally, a target system

may have additional security configured, which requires credentials to scan the services

on a system.

 EPIC ï Deliverable D4.1

© EPIC Consortium 27 Version 2.0 - 23/06/2012

Figure 8: EPIC Service Catalogue ï Service Discovery Configuration

When the discovery process has been started and completed, any WSDL documents for

the services found on the target system will now be listed when the users selects WSDL

Documents from the Service Documents box, pictured above. In Figure 9 we see a

number of services from the Fraunhofer Institute (FKIE) that are used in the Relocation

Pilot.

 EPIC ï Deliverable D4.1

© EPIC Consortium 28 Version 2.0 - 23/06/2012

Figure 9: EPIC Service Catalogue - List of FKIE Services

By clicking on an individual service, an overview of all the information known about this

service can be displayed (see Figure 10). From here an administrator can work further

with the service information; adding additional information, properties and defining

relationships to other entities in the catalog.

 EPIC ï Deliverable D4.1

© EPIC Consortium 29 Version 2.0 - 23/06/2012

Figure 10: EPIC Service Catalogue - FKIE Service Overview

The content tab shows the actual WSDL for the service itself:

 EPIC ï Deliverable D4.1

© EPIC Consortium 30 Version 2.0 - 23/06/2012

Figure 11: EPIC Catalogue ï FKIE Service WSDL

For programmers and knowledge workers alike, the automatically generated graphical

view of the service is very userful:

